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This paper studies deconvolution algorithms for removing the interference caused
by objects near an antenna. Infinitely many time-domain algorithms are consid-
ered, the best of which may compete with frequency-domain methods. Special
care is taken to find a stable deconvolution algorithm that also accommodates the
discontinuity-related numerical noise in standard finite-difference time-domain
data.
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1. INTRODUCTION

This paper studies the removal of electromagnetic interference produced by near-field
scatterers. The numerical examples will roughly represent the removal of interference caused
by a mast, wing tip, or fin that is near a ship or airborne receiving antenna [1–3].

The above-described work will be seen, in Section 3, to reduce to the deconvolution of
the right-hand side of (1) below. This deconvolution could easily be done using Fourier [4]
or Laplace transforms. This paper’s goal, therefore, is to find what may be the best alter-
native time-domain algorithm. The best time-domain algorithm here will feed one-degree-
smoothed data into a first-kind Volterra equation solver [5] that is stable and second-order
accurate, and for which Richardson extrapolation yields fourth-order accuracy. This algo-
rithm will also accommodate the discontinuity-related numerical noise in finite-difference
time-domain (FD) data. These properties make the time-domain algorithm competitive with
frequency-domain methods [4].

The central equation of the preferred algorithm will be shown, in Section 3, to be∫ t

0
R(s) ds=

∫ t

0
KH(t − s) finc(s) ds, (1)
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whereR is the signal received after a nearby scatterer interferes with an incident signal
finc. The identity (1) follows directly from the Duhamel theorem [6] about the Heaviside-
step responsesKH of time-dependent linear systems, such as the Maxwell equations. The
discontinuous kernelKH will be computed here using a standard FD (finite-difference time-
domain) method, despite the numerical noise resulting from the discontinuity. This approach
arose from an earlier observation [7] that the standard-FD propagation of discontinuities
is useful for linear scattering. This paper and [7] are complementary in that the central
operator of [7] is a convolution and the central operator here is the deconvolution of (1).

Two prototype problems are defined in Section 2. Section 3 examines an infinite sequence
of time-domain algorithms, each of which could solve the prototype problems. The section
also finds the one algorithm of the sequence that has the best numerical properties. Section 4
numerically solves the prototype problems of Section 2 using the chosen algorithm. The
conclusion (Section 5) describes the relation of the present work to [7], which together have
two uses for the standard-FD propagation of discontinuous functions. Finally, the Appendix
discusses more-realistic problems.

2. TWO PROTOTYPE PROBLEMS

This section’s prototype problems will be solved numerically in later sections. These
problems involve the parameters of an existing antenna [8], sketched in Figs. 1 and 2. This
section will define the problems and say what they represent.

There is initially, for t < 0, no field in the rectangular domain of Fig. 1. Att = 0, a
time-dependent field becomes incident uniformly from the right. The electric compo-
nent of that field is always perpendicular to the page. The field represents a pulse that

FIG. 1. Scale drawing of a steel disk and the 32 locations (×) where the total field is received inside the
computational domain.
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is incident from a source that is far from the scatterer. The word “far” conventionally
[3] refers to a distance of at least, say, 10 timesL2/λ, whereL is the larger of the di-
ameters of the scatterer and antenna, andλ is a wavelength typical of the incident field.
The incident field propagates through free space (ε= ε0 andµ=µ0) and scatters from
an insusceptible (µ=µ0) conducting (σ ≤∞) object. The scattering object of the first
prototype problem is the disk of Fig. 1. The total time-dependent electric field is mea-
sured at each×-marked location in the figure, and it is assumed that the measurements do
not perturb the field. This electric field is the subject of all equations and graphs in this
paper.

Let Rj (t) be the field measured at thej th×-marked location from the bottom of Fig. 1.
Then this paper’s prototype problems are as follows: Given the total fieldRj at a single
known location, knowing thatRj was produced by a plane-wave pulse incident from a
known direction, and knowing also the location, shape, and composition (ε andσ ) of the
scatterer, one must compute the time trace of the incident pulsefinc.

The first prototype problem roughly represents the removal of the electromagnetic in-
terference from a mast, wing tip, or fin that is near [≤L2/(10λ)] a ship or an airborne
antenna [1, 2]. In Section 4 the incident pulse is a 1-cycle sinusoid with a 5.45-GHz carrier
frequency, whose free-space wavelength is approximately the diameter of the steel disk of
Fig. 1. Because the wavelength is also about the length of two×-marked intervals in Fig. 1,
this problem represents an existing 32-element phased-array radar antenna [8] that has a
wavelength-sized steel pipe located 40 cm in front of it. That pipe adds interference, which
deconvolution will remove.

The second prototype problem has multiple scattering, although only between the com-
ponents of a scatterer, drawn in Fig. 2. All parts of this problem are the same as those for
Fig. 1, except for the scatterers. Notice that the misaligned ellipses of Fig. 2 add asymmetry

FIG. 2. Scale drawing of a two-ellipse scatterer that produces multiple scattering.
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to this problem. The ellipses will also be seen to prolong some received signals or cause
ringing. These multiple-scattering effects will be removed by deconvolution in Section 4.

The Appendix illustrates the stability of deconvolution under large errors in incident
direction. The Appendix also discusses multiple scattering among the antenna elements
(× marks of Figs. 1 and 2), and the use of laboratory data.

3. NUMERICAL METHODS AND THEIR PROPERTIES

The deconvolution problems of Section 2 are linear; therefore, they can be solved in the
frequency domain [4]. This section will consider infinitely many time-domain alternatives
(3), and will examine their numerical properties to find the best one (3b).

Linear time-domain systems, such as the Maxwell equations, can usually be described
by the Duhamel theorem [6], which is the basis for this paper’s work. This paragraph
will sketch a verification that the Duhamel theorem does apply here. Then the theorem
will be used. To begin: The problems of Section 2 are described by the Maxwell equa-
tions∇ · D=∇ · B=∇ × E+ ∂t B=∇ × H − ∂t D− J= 0 and the constitutive relations
D= εE, J= σE, andB=µ0H . The parametersε andσ are functions in thex–y plane,
butµ0 is a constant. All three parameters are independent oft . The only nonzero electric
component of the field of the two-dimensional problems of Section 2 therefore satisfies

∂2
x E + ∂2

y E = µ0∂t (ε∂t E + σE). (2)

An existing proof [6] of the Duhamel theorem is then easily modified to accommodate the
∂2

y E term of (2). To connect that proof with the present work, however, the antenna and
its nearby scatterer are both located nearl/2 in the notation of [6], wherel is exceedingly
large. The Duhamel theorem then applies rigorously to the problems of Section 2.

The Duhamel theorem and its immediate generalizations yield infinitely many integral
equations for sufficiently smooth incident fieldsfinc. The equations are

R(t) =
∫ t

0
Kδ(t − s) finc(s) ds (3a)

∂−1
t R(t) =

∫ t

0
KH(t − s) finc(s) ds (3b)

∂−2
t R(t) =

∫ t

0
KtH(t − s) finc(s) ds, (3c)

...
...

where∂−2
t is the antiderivative operator∂−1

t R(t)≡ ∫ t
0 R(s) ds composed with itself. The

kernels of (3) denote the delta-function response,Kδ, the Heaviside response,KH, and the
ramp-function [tH(t)] response,KtH, at the location where a received signalR is measured.
The phrase “delta-function response” above refers to the response of (2) to an incident
field that is a Dirac delta function. For linear hyperbolic systems, such as the time-domain
Maxwell equations, a propagation-of-singularities argument [6] shows thatKδ itself has a
delta-function component. However, [7] shows that a bounded (L∞) approximation ofδ
can be propagated usefully using standard FD. IfKδ of (3a) is computed using such anL∞
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approximation, then the entire sequence (3a), (3b), (3c),. . . is of first-kind Volterra integral
equations (forfinc) with convolution kernels.

We now consider a numerical property that will help us identify the best algorithm in (3):
Linz [5] showed that if the left-hand side of a general first-kind Volterra equation

L(t) =
∫ t

0
K (t, s) f (s) ds (4)

is perturbed by an amount1L, then the resulting perturbation of the solution of (4) is, in
what is probably the best case,

1 f = O(h−11L). (5)

That ill-posedness result (5) favors equations that have smooth left-hand sides. Conse-
quently, (3a) is not the best algorithm of (3).

We still have infinitely many algorithms—(3b), (3c),. . .—the best of which will be
found only after a method for solving first-kind equations is described. This method will
be described as it applies to the eventually preferred algorithm (3b), but the same method
can be easily modified for all algorithms in (3).

Direct methods for solving first-kind equations (4) follow immediately from discretization
of the integral. The midpoint-rule discretization of (3b) yields

f1 =
[
∂−1

t R
]

1[
hKH

(
h
2

)] (6a)

fn = 1[
hKH

(
h
2

)]([∂−1
t R

]
n − h

n−1∑
i=1

KH,n−i fi

)
, (6b)

where

fn = finc
[(

n− 1
2

)
h
]

(7a)

KH,n = KH
[(

n− 1
2

)
h
]

(7b)

[
∂−1

t R
]

n
=
∫ nh

0
R(s) ds (7c)

are stepsize-h discretizations. If

|hKH(h/2)|¿ min
(| fn|,

∣∣[∂−1
t R

]
n

∣∣) (8)

then the numerator of (6b) is a small difference of large numbers, and significant digits are
thereby lost. Algorithm (3b) is therefore preferred because a propagation-of-singularities
argument [6] shows thatKH(0+) 6= 0, whereas the integral kernels of (3c), (3d),et seq.are
continuous and zero att = 0. (Their zeros are first order forKtH, second order forKt2H,
and so forth.) This issue has theoretical significance for the left-hand side of (8) and its
generalizations forKtH andKt2H. In corroboration, numerical experiments have shown that
the above-described loss of significant digits causes a rapid numerical blowup for the first-
order-zero case (3c). Equation (3b) therefore yields the best of the infinitely many algorithms
that follow from (3). (An imperfection of (3b) is studied in the last paragraph of Section 4.)
The sentence that contains (8) also yields a rough lower bound onh: namely, there should be
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at most a few time stepsn at which|hKH(h/2)| is much less than both| fn| and|[∂−1
t R]n|.

But clearly,h should also be significantly briefer than the time scales typical of∂−1
t R, KH,

and f . We therefore have approximate upper and lower bounds on the stepsizeh.
The preferred algorithm (3b) will now be improved. Linz [5] has shown that the error of

the midpoint-rule computation (6)–(7) is

fexact− fn = h2

24
εn + O(h4), (9)

whereεn is independent ofh. This allows for Richardson extrapolation [5], yielding fourth-
order accuracy. Equation (9) also shows that the computation (6)–(7) is stable ash→ 0.
These useful properties are the reasons that the midpoint rule is used in (5)–(8) to select the
best algorithm.

These are the numerical properties of the deconvolution algorithm (3b): The dataR are
first smoothed using integration in (3b). Equations (4) and (5) show that the algorithm’s
ill-posedness is thereby reduced. The smoothed data∂−1

t R are fed into a routine (6) that
is seen in (9) to be stable and second-order accurate. Richardson extrapolation, based on
(9), then yields fourth-order accuracy. For any error tolerance, theO(h4) method allows a
largerh to be used. A largerh will further reduce sensitivity to perturbations of the data,
according to (5). It will also preserve significant digits, according to (8). Buth should not be
allowed to far exceed either bound described in the first three or four sentences before (9).

We turn now to purely computational issues. To begin, if the discontinuous kernelKH of
(3b) is computed with standard FD, then the computedKH will include a large amount of
purely numerical noise. We will briefly consider two alternatives to such a noisy computation
of KH; then, in the next paragraph, we will see how to easily overcome the noise. First,
the numerical noise would be much smaller wereKH computed with an essentially non-
oscillatory (ENO) method [9, 10]. The adaptive stencils of ENO methods do, however, make
their results nonlinear, and perhaps inappropriate for the deconvolution of linear systems.
Standard FD is used here instead of an ENO method for that reason. A second alternative
to the standard-FD propagation of the discontinuousKH is to propagate the ramp function
tH(t) and then differentiate, as inKH(τ )= ∂τ KtH(τ ). But numerical noise would then be
magnified by differentiation. The kernelKH is therefore, for simplicity, computed directly
by propagating H(t) using standard FD.

The numerical noise ofKH is easily overcome. When the grid properly resolves the
scatterer, this noise will have a regular number of points per oscillation, 10 to 20 in the
computations of Section 4. The results of those computations, therefore, are smoothed with
a 40-point filter8

f
87→ 1

TM + tm

∫ TM

−tm

f (t + s) ds, (10)

wheretm= 19h, TM = 20h, and f is a generic function. That filter is also a convolution

8 ∗ f =
∫ ∞
−∞
8(t − s) f (s) ds (11a)

8(t) = (TM + tm)
−1H(t + tm)H(TM − t) (11b)

for all t ∈ (−∞,∞). The equation

∂−1
t (8 ∗ R) = (8 ∗ KH) ∗ finc (12)
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then follows from (3b) and elementary calculus [11]. That equation is an identity. But the
next, and final, computational issue will lead to an approximation of (3b) and (12).

The wavefront of an FD-computed pulse travels with the superluminal velocityc/CFL
because of the nature of time stepping in a CFL-stabilized computation. The filtered pulses
(8 ∗ R) and(8 ∗ KH) are therefore truncated as

(8 ∗ KH)
T7→ (8 ∗ KH)H(t) (13a)

(8 ∗ R)
T7→ (8 ∗ R)H(t), (13b)

wheret is now measured relative to the analytically determined wavefront-arrival time of
each receiver. (That arrival time is the same for all receivers of Figs. 1 and 2. For more
complicated media, the arrival time can be computed using characteristics or the eikonal
equation [6].) The quantities on the right-hand sides of (13a) and (13b) replace, respectively,
KH andR in (6). Notice that the truncation of the superluminal FD-computedKH assures that
the right-hand side of (13a) will be discontinuous att = 0. This is beneficial according to (8).
It may also be the only known computational advantage of the superluminal feature of CFL-
stabilized FD. If, however,KH were known exactly by analytical means then a propagation-
of-singularities argument [6] would prove thatKH already is discontinuous. Regardless of
whetherKH is computed exactly or with filtered-then-truncated FD, its discontinuity at
t = 0 will yield the numerical benefits described by (5) and (8).

The main disadvantage of truncation (13) is its approximation to what would otherwise be
an identity (9). It has been proven [11], however, that the truncation errors of (13) vanish as
h→ 0, provided the superluminal parts of the FD-computedR andKH tend to 0 pointwise
ash→ 0.

4. NUMERICAL SOLUTIONS

This paper’s prototype problems are defined in Section 2. The incident fields are one-
cycle 5.45-GHz sinusoidal pulses. That frequency is the midpoint of the frequency range of
the existing antenna [8] modeled here by these problems. The corresponding wavelength is
5.5 cm, which can be compared in Fig. 1 with the 3-cm element (× symbol) spacing and
the 6-cm disk diameter. The steel disk has a conductivity of 107 S/m and its permittivity is
that of free space. The remainder of Fig. 1 has free-space properties.

Fields were computed with a standard-FD program that was written [12] in accordance
with an early manuscript version of [13], but whose absorbing boundary condition was
replaced [12] with a Berenger PML [14]. The FD program computed electric fields that
were always perpendicular to the plane of Fig. 1. The program was second-order accurate
in space and time. It was run with CFL= 1/2 on a 2840× 5232 spatial grid, yielding 4735
points per carrier-frequency period. This grid was used to compute the one-cycle-sinusoid
responsesRj (t) of Fig. 3, and to computeKH.

Figure 3 shows the signalsR2(t), R4(t), . . . , R32(t) that are received at every other
location in Fig. 1. These signals are vertically offset in Fig. 3. The largest and smallest
offsets are used, respectively, for the top and next-to-bottom×-marked locations in Fig. 1.
The steel disk casts a shadow whose darkest part isR10 of Fig. 3. Note also the delayed-wave
components of the signals.

The integral kernelKH and each received signalRj were filtered, truncated, and time
shifted as in (10)–(13). The results were fed into the second-order-accurate routine (6)–(7).
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FIG. 3. Total signal received at every other×-marked location in Fig. 1.

Each received signal was deconvolved separately from the 31 other signals, resulting in
32 independent reconstructions of the incident fieldfinc. Figure 4 shows a typicalO(h2)

reconstruction. This uses the signal received at the 15th× from the bottom of Fig. 1. The
incident signal and its reconstruction almost overlap.

Figure 5 shows that each of the 32 second-order-accurate reconstructions offinc (curve
with circles) reproduces theL∞ norm of the one-cycle sinusoidfinc (boldface line) within
2%. TheL2 norm (not graphed), whose square is proportional to the energy of a pulse, is
reproduced to within 1.3%.

FIG. 4. Reconstruction of the incident signalfinc, using one received signal from Fig. 1.
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FIG. 5. Restoration of theL∞ norm for all 32 locations in Fig. 1.

The predominant errors of theseO(h2) results are barely evident in the figures. To find
the predominant reconstruction error in Fig. 4, look along the left-hand vertical axis for a
brief, diagonal segment near 0.15 V/m. That segment is difficult to find. The predominant
errors of all 31 otherO(h2) reconstructions also are difficult to find in their graphs (not
presented). Richardson extrapolation [5] did further reduce the barely evident numerical
errors of all 32 reconstructions.

The computations just described for the disk of Fig. 1 were redone for the two-ellipse
scatterer of Fig. 2. Figures 6 and 7 show, respectively, the reconstructions for the 12th

FIG. 6. Reconstruction of the incident signalfinc, using a received signal from Fig. 2.
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FIG. 7. Reconstruction of the incident signalfinc, using a multiply scattered signal from Fig. 2.

and 21st×-marked locations from the bottom of Fig. 2. Those locations were chosen
because their received signals illustrate prolongation (Fig. 6) and ringing (Fig. 7) caused by
multiple scattering. The incident and reconstructed signals almost overlap in Figs. 6 and 7.
The predominant errors of 31 of the 32 second-order-accurate reconstructions are again
confined to the first few data points and are barely evident in the graphs. Thus, time-domain
deconvolution has removed the multiple-scattering effects of the two-ellipse scatterers in
31 of 32 cases. The single exception will now be studied.

The only failed reconstruction is for the 13th× from the bottom of Fig. 2 (two ellipses).
That one reconstruction (not graphed) oscillates with exponentially increasing amplitude, as
is typical of an unstable computation. The instability is evidently caused by lost significant
digits, associated with condition (8). In particular,|hKH(h/2)|/min(| f |, |∂−1

t R|) is 2.7%
in this computation at the time (1.37× 10−11 s) when divergence first becomes apparent
at the 13th×. That quotient is no less than 7.2% at the same time in the 31 convergent
reconstructions for Fig. 2. That concludes the numerical evidence that (8) describes the one
failure. Therefore, if it were crucial to have a convergent reconstruction based on the signal
received at the 13th× from the bottom of Fig. 2, then (8) suggests that a largerh should be
tried in (6)–(7). In any case, the 63 other reconstructions for Figs. 1 and 2 were successful.

5. CONCLUSION

This paper arose from [7]. There, the Kronecker-delta-function responseKδ was com-
puted with standard FD and then used in (3a) to propagate other incident fieldsfinc. Other
reference pulses were considered as alternatives toKδ, but [7] concluded thatKδ was
the simplest reference pulse to use. Thus,Kδ and (3a) are best for the (convolutional)
forward-propagation problem of [7], andKH and (3b) are best for the (deconvolutional)
reconstruction problem of the present paper. These two methods, (3a) and (3b), are useful
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despite the fact that their integral kernels are standard-FD responses to discontinuous inci-
dent pulses. The time-domain-deconvolution method (3b) is, furthermore, stable andO(h2)

accurate—it isO(h4) accurate after Richardson extrapolation—and it consequently may
compete with frequency-domain methods [4].

The purely numerical noise in a computed Heaviside responseKH required a simple
filter. The filtered result was also truncated to restore a discontinuity att = 0 that tends to
conserve significant digits (8). The filtering and truncation would have been unnecessary
were KH known exactly. The resulting algorithm yielded almost imperceptible errors in
63 of 64 cases. The exceptional case is evidently explained by (8), which also suggests a
remedy.

The Appendix will discuss modifications for more-practical problems.

APPENDIX: GENERALIZATIONS

This appendix addresses three practical problems: First, the known angle of incidence
may be in error. Second, the received signal may be affected by multiple scattering among
antenna elements. Finally, one may want to use laboratory data.

We will start with errors in the angle of incidence. The sensitivity to these errors was
tested by looking at received fields caused by 1-cycle sinusoids that were incident from
5◦ and 45◦ below the normal to the antenna of Fig. 1. The incident signals for 5◦ and 45◦

incidence were reconstructed using theKH for 0◦ incidence, thereby introducing errors. All
64 reconstructions converged, with theO(h2) andO(h4) reconstructions practically indis-
tinguishable. Figure 8 illustrates the three distinct types of reconstructed signals observed.
The types involve prolongation, numerical noise, and ringing. The reconstructed signals do,
of course, differ from the actual incident field because of the intentional errors in angle. For
an arrangement other than Fig. 1, the effect of errors in angle would depend on the case

FIG. 8. Typical reconstructions of the one-cycle sinusoidfinc when there are 5◦ and 45◦ errors in the angle of
incidence.
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at hand. Figure 8, however, illustrates stability under large errors. We now turn to multiple
scattering.

The prototype problems’ most idealized assumption is that the antenna measures the
field nonperturbatively. This assumption neglects the important practical effect of multiple
scattering among the 32 elements (×marks) of Figs. 1 and 2. One way to simulate multiple
scattering would be to have an imperfect absorber in a small area near each×-marked
element, and perhaps a small conductor behind each imperfect absorber. In any case, the
standard-FD response would still be a linear operator acting on the incident fields. The anal-
ysis in this paper would usually apply without change to any such linear system, including
all that have multiple scattering.

We finally consider what could be done with laboratory data. Heaviside-step pulses are
problematical in the laboratory, so it is likely thatKH would have to be inferred from other
measurements. To remove interference in a frequency band [ωmin, ωMAX ], one would first
propagate a physical reference pulsefref whose spectrum covers [ωmin, ωMAX ] and whose
risetime is¿2π/ω. Or fref could be a suitable linear combination of narrow-band pulses.
In either case, one would then solve (3b) numerically forKH using the physical received
signalsR resulting from the knownfinc= fref. (The roles ofKH and f here are reversed
from before.) If thisKH were truncated as in (13a), then the result could presumably be
used as usual to reduce interference in the frequency band [ωmin, ωMAX ].
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